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ABSTRACT

The problem of optimal frequency separation

involves the simultaneous separation of several vibra-

tion modes even where only maximal frequency separation

be tween the two lowest frequencies is desired. Conven-

tional optimization procedures which maximize a single

function cannot deal with such a problem. Earlier attempts

to treat this problem have therefore encountered diffi-

culty in solution. New optimization methodology is ,

therefor e, introduced which allows the s imultaneous

separation of several modes. This new procedure is

coupled with a powerful new general optimization algorithm.

Test results indicate that this new combined procedure

is capable of the reliable solution of the optimal frequency

separation problem.
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1.

I. Introduction

Bronowicki et al., (1,2] in their extension of earlier studies of

optimal synthesis of “T” ring stiffened cylindrical shells under hydrostatic

pressure f 3,5] introduce the problem of optimal natural frequency separation .

Their pioneering effort uncovered several difficulties associated with such

problems.

Ref . [1] in its discussion of their type III problem (separation of

the two lowest frequencies with primarily axial motion) notes that their

optimal search terminates at a design where the second primarily “axial”

frequency has a radial component that is equal to the axial component . In

the type II problem (separation of the two lowest frequencies) their search

terminates at designs where the second and third frequencies are essentially

equal. The authors of [1] recognize the difficulty in obtaining an optimal

solution to the axial frequency separation problem which they attribute to the

need for an improved definition of primarily axial frequencies.

The difficulty with these problem types is that a conventional

mathematical programming formulation and solution procedure is not effective

at the points described above . In problem type II at points where the secon d

and third lowest frequency are essentially equal it is necessary to separate

the first and third as well as the first and second frequencies in order to

continue the search. In problem type III it is necessary to suppress growth

of the radial component associated with the second primariliy axial frequency

in addition to increasing its separation from the lowest axial frequency in

order to continue movement toward the optimum.

In addition to the above difficulties Ref.  [1] utilizes an optimiza—

tion procedure which is apparently unreliable on the problems formulated therein .

_ _  _ _ _ _  _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~_  _ _ _ _ _ _ _ _ _
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2.

This report presents new methodology for treating such problems .

It applies this method to problem type II of Ref. (1] as well as a similar

problem so as to test its effectiveness and to gain additional insight into

optimal frequency separation. This work utilizes a new and powerful mathe-

matical progr~imiiing procedure (6], which appears to ~vercome the reliability

problem associated with that used in Ref. [1] thereby allowing generation

of more accurate data on the characteristics of designs with frequency

separation.

In addition, this improved optimization procedure is adapted to

a minimum weight problem formulation similar to that of Ref. (3] and prob—

lem type I of Ref. [1] (minimum weight with minimum natural frequency con-

straint) to demonstrate its effectiveness on a six variable form of this

problem. Previous attempts to solve this six variable form had proven to

be insuccessful (3,7].

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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II. Problem Formulation

Mathematical progra~ ning procedures treat the problem:

Find those values of the variables Xj  that result in

f(x~) win f(x~) i — l ,2 ,...I (1)

subject to the constraints

gj
(xj) > 0 j l,2...J (2)

and

x~~~< x ~ ~~~~ (3)

These procedures start from some initial point x~ and by some strategy ,

usually based on the local properties the functions involved, generate a

sequence of points where

f(xr’) < f(x~) • (4)

In problem type II of Ref. [1]

f(x
i
) — — w2 (5)

where and w
2 

are the first and second in vacuo , natural frequencies of the

shell segment shown in Figure 1. The variables X
i 
are the skin, stiffener

web and stiffener flange thicknesses , the flange width, stiffener spacing and

stiffener web height respectively as given in Figure 1.

Consider the problem of locating an improved point in the neighbor-

hood of a point x~ where
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5.

and where is the third natural frequency . Each frequency Wk where

k l ,2,3 — — ~~~and -
(6)

is a function of the shell design parameters such as its radius, length ,

material properties, applied hydrostatic pressure , etc., the problem variables

x~ (refer to Fig. 1) and the number of circumferential waves n~ and axial

half—waves m~ associated with frequency u~ at point x~ . Thus, for a given

set of design parameters the kth natural frequency at point x~ is

r r r r= u(xi, 
~
k , m~) (7)

a function of both continuous and integer variables. Gradient based pro-

cedures such as those used in (1] determine a direction for function im—

r r rprovement from the derivates of and with respect to x~ . An attempt

to move in a direction increasing the separation between the modes associated

with these frequencies where u2 ~ u3 
will often reduce the separation be—

r rtween the modes associated with and (A)
3
. These modes will then produce

the two lowest frequencies after a move to point xr1 where now the separa-

tion between these frequencies will be lower than at point x~. Conventional

gradient based procedures are therefore likely to fail at such points .

A procedure is needed at such points that will separate w,~ f rom

while simultaneously ‘separating w1 and A)3. Conventional gradient based

procedures cannot provide this simultaneous separation.

Direct search optimization procedures avoid this difficutly since

they do not involve derivatives. These procedures unfortunately are not

_ _  _ _ _  - --. — - -—, - -~~~ -- _ _ _ _ _ _ _ _ _ _
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highly reliable (8] and the best of them is apparently not capable of

treating the difficult six variable formulation of this shell design problem

(3 ,9]. On the other hand a combination direct search and gradient based

procedure, the Direct Search—Feasible Direction (DSFD) algorithm (10]

which proved reliable on a series of 10 test problems of Ref. (8] also

proved to be capable of treating this six variable shell problem (11]. The

DSFD thus appears to be adaptable to the frequency separation problem.

This procedure couples an efficient direct search scheme with a gradient

based direction finding procedure used at points of direct search failure.

A refined version of this procedure is used here [6].

As the direct search avoids the use of derivatives the objective

function given by equation (5) can be used without difficulty at all points

where direct search is utilized. At points of direct search failure however

the search is restarted on the basis of local derivative information. Fortun-

ately the direction finding algorithm used can easily be modified to handle

the need to separate w~ and as well as and

The direction finding procedure of Zontendijk (12] is utilized to

restart the basic direct search. A direction s~ in which an improved point

may be found is normally determined from the solution of the linear pro—

gr~~mt1ng problem:

Given the set x~, find the set s~ that results in a

max e (8)

for which

(9)

( ) T V f(x
i
) + a < 0 (10)

/

____________________________________________________



_______ ~--- -----.~~~~-- ~~—.-,.---..- — - --. ‘- - .- 
~~~~~~~~~~~~~~~~~~~~

-
~~
‘ ‘-

~~
--

~
, —----:

7.

~ g~ (x~) + W~ a < 0 j (11)

— < 1  (12)

— l < s ~~~c 0  i E— C  - (13)

0 < s ~~< l  i C + i ~ (14)

Here (8~)T indicates the transpose of vector ~~ W~ is a weighting parameter,

the set J contains the active constraints where
a

gj (xi) < e~ (15)

a1 is small arbitrary positive constraint defining “activity” , and 1
a’ ~~

constitute the active upper and lower regional constraints, respectively ,

where if

u +x
i

_ x
j < e  j

~~~~
1
a

£ - 
(16)

xi
_ x
j < e  i~~~I

Zoutendijk (12] shows that if the solution s~ is a null vector ,

then the point is a local optimum and if not then the direction of s~ is

the best feasible direction.

Kquations (8—14) constitute a line . prograimning problem with the

variables s~ and a. Equation (8) is the objective function and the remaining

equations of the constraints. The solution s~ can be obtained reliably

and efficiently using any suitable linear programming method.

At points where

— ~~ < e 3 (17)

. . ~~~~. -~-- -- -~~~ -‘~~~~ -~~~ — .. .~~~~ ~~~~~~~~~~~~ -.- -----.
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and e3 is an arbitrary small constant indicating frequency similarity

equation (10) is replaced by the set

( ) T Vf~(x~) + a < 0

T -1 (18)
(s
i) ~~~~~~ 

+ a < 0 j

where f
1 
is given by eq (5) and

(19)

It may be seen that the solution to the modified direction finding problem

will yield a direction that will separate w1 and as well as separating

u1 and w2. -

In the event w2 ~ ~ the same modification procedure may be

used . Thus if

w4
- w 2

< e
3 

(20)

replace equation (10) with the set

(s
i)
T V f1(x~) + a < 0 1

( ) T V f2(x~) + a < 0 (21)

V f 3
(x~) + a < 0 i

where

(22)

Similar reasoning may be adapted to treat problem type III of

Ref. (1].



9.

III . The Shell Design Problem

An optimal shell design capability was developed along the lines of

earlier procedures (3,4] to allow a study of the aforementioned optimal

frequency separation method and to provide greater design flexibility than

available in earlier programs .

Four problem types are treated :

Type 0 Problem

The objective function is

f(x~) = (23)

where the design variables are as given in Fig. 1 and W
D is the weight/dis—

placement ratio of the shell segment excluding the bulkheads (3].

The behavior constraints used control;

= gross buckling

= shell (inter—ring) buckling
g
3 = shell yielding

= stiffener yielding

g5 
= stiffener flange buckling

g6 = maximum flange thickness

g7 minimum flange width

minimum internal or maximum external radius

— web buckling

constraints g9 and g10 are not used with the type 0 problem.

The equations used for 83~ 
g4, g6, g

7 
and g

8 are taken from [3].

Those used for g
5 
and g11 are essentially eqns (11) of Ref. [2]. Reference

__________ a ,- -  ~~~ .. . - — ~~ -~~-- ~- .. ,~~~~~~ ‘ 
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(2] uses the same equations as (31 for the shell and stiffener yield con-

straints g3 and g4 except that [21 
ignores the effect of eccentricity (out—

of—roundness) on stiffener stress.

The basic behavior prediction equations for constraints g
1 
and g2

are adapted from Ref. [5] which uses a procedure described in [131. Gross

buckling control is achieved by stating that

*
P — F S pcr 1

> 0 (24)
Pcr

where FS1 
is the factor of safety for gross buckling p is the hydrostatic

pressure and

*
1’cr — IDifl 

~cr 
(n ,m) (25)

where u is the number of circumferential waves and m the number of axial

half-waves. The equation for 1
~cr and the method for finding the minimum

buckling load p* are given in Ref. [5]. This equation is based on the

Dommell shell theory and a smeared stiffener orthotropic analysis.

The equation for the shell buckling constraint is similar to that

for gross buckling except that x5,the distance between stiffeners, replaces

the overall shell length in eqn (2) of Ref. [5] and the stiffener terms

are omitted.

Type 1 Problem

This problem type is identical to type 0 except a minimum natural

frequency constraint is used where

W i - (Al

g — ‘~~~~ > 0 (26)9

I u w u L T ~~~~rnft~~~ , . . uJrJuJ’

24.
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where is the specified minimum frequency and (A)
1 
the lowest natural

frequency of the structure. The quanity 
~~ 

is found from

— mm ~(n,m) (27)

where A is given by eqns (3l)—(33) of Ref. (13].

The n and in producing the minimum frequency are located in exactly

A the same fashion as for the minimum buckling load . The minimum natural

frequencies of both the entire shell and the segment of the shell between

stiffeners are determined and the lowest value is used in eqn (27) .

The frequency equations are derived using the same smeared stiffen-

er orthotropic shell approach used for the general buckling equation.

The effects of stiffener placement (interior or exterior) and torsional

rigidity are considered but imperfection sensitivity is ignored. Experi-

mental results indicate that such equations produce reasonably accurate re-

sults for hydrostatically loaded stiffened shells of the type studied here

where the stiffener spacing is small compared to the buckling wave length

as is the case for the range of parameters studied in this report. Imper—

fections do not play a major role in such shells [14,15].

It should be noted that the use of an in vacuo model for the

vibration of shells submerged in water may produce substantial error (7,16].

Its use here however , is justified in light of the objectives of this work.

These objectives are to present and evaluate the effectiveness of new

methodology for the design of shells with optimal frequency separation and

to gain insight into the characteristics of such shells.
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A comparison of the values of the inter—ring buckling pressures

produced by equation (8) of Ref. (3] and the procedure used here shows values

within 2Z for the designs of this study. Since the validity of the equation

used in (3] has been demonstrated by experiment [17) the model used here for

inter—ring buckling appears to be suitable even though it assumes simp le

support of the ends of the inter—ring panel. The effect of this assumption

on the natural frequency values for such short shells is unknown. The use

of this model for natural frequency prediction in this preliminary study ,

however , seems justified in light of the rather substantial error produced

by the in vacuo assumption and the objectives of the study. A consideration

of inter—ring vibration allows an opportunity to determine if this mode

appears to be significant for the types of problems studied here . Further-

more inclusion of this vibration mode avoids the inconsistency in Ref. [1]

wherein both an inter—ring buckling constraint (natural frequency is zero

where such a constraint is active) and a minimum natural frequency constraint

are specified [7].

Type 2 Problem

Here the objective function is given by equation (5) and a maximum

weight constraint

w - w
~
l0 — D 

> 0 (28)

is used in ,additiàn to g9, where is the specified maximum allowable

weight/displacement ratio.

This is the optimal frequency separation problem (type II) of

Ref. (1] . -

_ _  . 
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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Type 3 Problem

The objective in this problem type is to maximize the lowest

natural frequency . Thus the objective function here is

f(x ~) — — (29)

This problem type uses the same constraints as type 2.

A difficulty similar to that arising in problem type 2 is encount-

ered here . The optimal search will encounter points where =

This situation is treated in the same fashion as for the type 2 problem.

Thus where

let U)
2 — U)

1 
< e3 

(30)

~~~~~~~~ 1
(31)

~2~~~~~2 J
and equations (18) are used in place of (10). Where -.

...
.. — 

-

w
3
-w 1

< e
3 

(32)

let - -

f
3

-w 3 . -- .. .- - 
. . 

(33)

and replace eqn (10) by eqns (21) .

Two additional options are available to the user of this capability .

One option allows the designer to use a five variable formulation . Here

the value of the web thickness is calculated so as to just satisfy the web

buckling constraint . Thus web thickness is not treated as an independent

variable when this option is selected . Since the web buckling constraint

was found to be active in all cases studied this option can apparently be

used to reduce computational effort while still producing optimal solutions.

L - . .. .
~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~ 

-- 
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Another option specifies a four variable formulation. Here the

number of stiffeners to be used is specified rather than treated as a

variable and the web thickness is calculated as above . Since it was found

in earlier studies [3 ,4] that there is usually little increase in weight

asso~iated with specifying an arbitrary stiffener spacing, the designer

1/ thus for practical purposes free to choose a stiffener spacing, within
- relatively broad limits, with little performance penalty for problem types

0 and 1.

/
- .-- The four variable formulation may be used with the type 2 and 3

problems but the impact on performance resulting from arbitrarily selecting

stiffener spacing has not been studied.

j

I
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IV. Results

A computer program called SBSHL7 coupling the DSFD optimization

procedure and problems described above was used to repeat some of the shell

design studies of Refs. [1,3] in order to evaluate the performance of

SBSHL7 on this problem, to investigate the problem of optimal frequency

separation, and to allow a comparison of the results generated with those

of Refs . [1,3]. All studies use the following design parameters unless

otherwise indicated ; shell midplane radius K = 5.029mn (198 in.); shell

length L — l5.O9tn (594 in.) shell eccentricity of zero; immersion depth

304.8m (1000 ft); specific weight of i~ nersion fluid (sea water) y — 1.0256

g/cm 3 (O.0374lb / in3) ,  specific weight of shell material y = 7.733 g/cm 3

(0.282 lb/in.3) Young’s modulus 20.68 X lO6N/cm2 (30 X lO6
psi), Poisson ’s

ratio ~i — 0.30 and allowable yield stress of 41,360 N/cm2 (60,000 psi) for

the shell and stiffener material. Factors of safety of 2 are used for all

buckling constraints and a minimum natural frequency of zero is specified.

All shells use interior stiffeners.

Table 1 demonstrates the reliability of the new optimization procedure

on the type 0 problem. The starting points, in mm, used for this study were :

(x~)1” (0,0,0,0,0,0)

(x~) 2— (12.7,12.7,12.7,127,254,127)

(x~) 3’ (25.4,25.4,25.4,254 ,508 ,254)

(x~) 4’. (38.1,38.1,38.1,381,762 ,381).

L . .. . ~~~~~~~~~~ . - . - . _  1_ _ —~--~---~-



--—--~~~ :-~ -
~

16.

Table 1. Convergence by SBSHL7 to an Optimal Configuration
Widely Separated Starting Points for the Type 0 Problem.

Starting Starting Starting Starting
Ref. [8J Point 1 Point 2 Point 3 Point 4

WD~ weight! 0.1357 0.10306 0.10303 0.10313 0.10312
displacement ratio

skin thickness , mm (in ) 26.901 28.092 28.128 28.082 28.067
(1.0591) (1.1060) (1.074) (1.1056) (1.1050)

x2 , web thickness , (in) 24.226 6.7158 6.675 1 6.7539 6.7005
(0.9538 (0.2644) (0.2628) (0.2659) (0.2638)

x3 , flange thickness, mm (in) 9.9772 33.609 27.277 12 .893 15.133
(0.3928) (1.3232) (1.0739) (0.5076) (0.5958)

x4, flange width, mm (in ) 125 .308 25 .293 30 .322 67.774 55.535
(4.933) (0.9958) (1.1938) (2.6683) (2.1864)

x5, stiffener spacing, (in) 580.29 403.79 407.67 412.47 406.30
(22.846) (13.9763) (16.050) (16.239) (15.996)

x6, web heigh t , mm (in) 463.07 292.68 296.93 299.14 298.37
(17.168) (11.5238) (11.690) (11.777) (11.747)

g1, gross buckling 0.622 0.000 0.000 0.000 0.000

~2’ panel buckling 0.003 0.440 0.438 0.423 0.437

g3, skin yield 0.004 0.000 0.000 0.000 0.000

g4, stiffener yield 0.339 0.088 0.088 0.089 0.089

g5, flange buckling 0.003 1.000 0.993 1.000 0.989

g6, web buckling * 0.041 0.001 0.013 0.000

*Web buckling controlled by setting x6 — 18 x
3
. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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It may be seen that a series of runs from widely separated starting
• points converged to similar designs with weights that a:e within 0.15% of the

lowest. This behavior is indicative of reliable optimization algorithm per—

forinance and the absence of local optima .

The designs generated by SBSHL7 are substantially lighter than those

given in Ref. [3] due primarily to the elimination of an unrealistic s t i ff-

ener buckling constraint used in [3] but not used here or in [1,5].

The shell buckling equations used here are considerably more com-

plex than those of (3]. This added complexity in addition to the increase

in problem dimensionality and difficulty resulting from the uncoupling of

the stiffener variables greatly increases the computational effort required

for solution. The program SBSHL7 typically requires about 100 times more

CPU time than that of [3]. Thus, the added sophistication is obtained at

substantially increased cost. Still, if a reasonable starting point is

specified , the cost of solution is not excessive (normally less than 2 mm

CPU time on an IBM 370—168). The buckling equations used in [3) can un—

fortunately lead to invalid designs for certain ranges of parameter values

[5] since the interior buckling minimum (m>l) is not considered. This is

also true of the procedure of Ref .  [1] where m>6 is ignored . Thus , this

added complexity is justified . Fortunately the computational cost can

apparently be drastically reduced by use of a five variable formulation

as will be shown below .

Table 2 demonstrates the superiority of DSFD over the STiNT procedure

used in [1] which failed to locate the minimum, producing designs substantially

heavier than those presented here . The shell parameters utilized in (1] 
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Table 2. Comparison of Designs Developed by SBSHL7
With Those of Refs. [1,2] for the Type 1 Problem.

Ref. [1] Ref. [2] SBSHL7

W
D, 

weight/
displacement ratio 0.13317 0.11274 0.10746

skin thickness , mm (in) 30 .754 30.622 29.522
(1.2108) (1.2056) (1.1623)

x , web thickness , mm (in ) 9.563 6.0274 5.10542 (0.3765) (0.2373) (0.2010)

x3, flange thickness, (in) 11.951 7.8003 4.6533
(0.4705) (0 .3071) (0.1832)

x4, flange width, mm (in) 448.66 263.22 150.80
(17.664) (10 .363) (5.937)

x5, stiffener spacing, mm (in ) 853.49 766 .32 424.51
(33 .602) (30.170) (16.713)

web height, t (in) 497.56 279.91 -239.04
(19.589) (11.020) (9.411)

g1, gross buckling Not given Not given 0.234

~2’ 
panel buckling Not given Not given 0.742

g3, skin yield Not given Not given 0.000

g4, stiffener yield Not given Not given 0.081

g5, flange buckling Not given Not given 0.039

web buckling. Not given Not given 0.000

g7, m m .  nat. freq. H
~ 

Not given Not given 0.000

H 28.12 12.03 12.001 z

, H 49 .39 22 .30 20 .502 z
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are used for this study. They are identical to those given above except

that u — 0.33, — 8.225 g/cm3 (0.30 lb/in.3), 
~min 

= 12 Hz , and factors

of safety equal to unity are used for the buckling constraints.

The design of Ref. (1] is obviously not optimal since an optimal

design should converge to the minimum frequency constraint . Neither is

the design a local optimum. This design was used as a starting point for a

synthesis run using SBSHL7. The search immediately located a better near—

by design and moved to a design essentially identical to~~~at presented

in Table 2 for SBSHL7. Since the general and shell buckling constraints

are not active at this point, the constraint equations used here are identical

to Ref. [1]. Thus, the design of Ref. (1] does not appear to be a local

optimum.

The design presented in Table 2 generated by SBSHL7 used the start—

ing point (x~)
1.

The design generated in Ref. [2] cannot be considered as representa-

tive of the performance of the STiNT procedure of [13 since it used a near

optimal starting point supplied by Pappas (7). The performance of STiNT

in [1,2] coupled with the evidence developed in an earlier comparison study

[8], strongly suggests that SUMT simply cannot cope with this six variable

shell design problem.

Problem type 2 and 3 where run using both five and six variable

formulations. Table 3 give the results of typical problem type 2 and 3

runs. A maximum weight displacement ratio, (W
D
) of 0.150 was used for these

runs. The quantities flf 
and fl

g 
are the number of objective and constraint

function evaluations required for convergence. Several observations can be

made from the data contained in this table.

- _ _ _  - -
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Table 3. Optimal Designs for Problem Type 2 and 3

Initial Type 2, 5 Var. Type 2, 6 Var. Type 3, 6 Var. Type II
Point Optimum Optimum Optimum Ref. (1]

WD 0.155 0.150 0.150 0.150 0.135
25.40 38.46 38.56 35.00 31.03
(1.000) (1.514) (1.518) (1.378) (1.222)
25.40 13.97 13.69 11.81 10.03x2 (1.000) (0.550) (0.539) (0.465) (0.395)

25.40 15.29 33.81 23.04 11.82x3 (1.000) (0.602) (1.331) (0.907) (0.465)

254.0 246.4 122.6 541.0 445.8
(10.000) (9.702) (4.826) (21.30) (17.55)

508.0 1396 1398 1372 859.9
(20.000) (54.96) (55.04) (54.00) (33.85)

254.0 820.9 804.9 731.0 526.3
(10.000) (32.32) (31.69) (28.78) (20.72)

0.539 0.789 0.790 0.749 0.677

g2 0.472 0.304 0.307 0.126 0.342

0.001 0.114 0.116 0.001 —0.002

0.389 0.467 0.466 0.521 0.325

g
5 

0.947 0.868 0.994 0.714 0.619

g6 
0.000 0.602 0.113 0.341 0.018

g7 
10.000 9.702 4.826 21.998 17.551

g8 
0.598 0.544 0.543 0.553 0.574

g9 
0.534 0.717 0.717 0.743 0.673

—0.035 0.001 0.001 0.000 0.120

0.967 0.000 0.000 O.fl05 —0.006 
-

w1
(n
1
m
1
)Hz 25.76(2,1) 42.40(2 ,1) 42.41(2,1) 46.71(2,1) 28.37(36.65)* -

w
2
(n
2
m2
)Hz 33.04(3 ,1) 72.84(1,1) 72.90(3,1) 46.87(14,l)* 51.96(58.52)**

U)
3(n 3m3)Hz 44.29(3 ,2) 72.84(3 ,1) 72.90(1 ,1) 47.50(l5 ,1)* 51.96

w4 (n 4m4)Hz 47.82(1,1) 72.88(14,l)* 73.19(l4,l)* 49.83(13,1)* —

(w2 —w 1)Hz 7.28 30.44 30.49 0.16 23.59(2l .86)**
1 2963 16.779 22,572 —

n 11 2118 34 ,371 50 ,193 —

S

*M~d. associated with shell (inter—ring) vibration . -

**Frequen cy using Donnell shell theory employed in this report .
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21.

The computational effort required to achieve convergence using the

five variable formulation is substantially less than that using the six

variable form . Since all studies of all problem types indicates that the

web buckling constraint is always active at the optimum there seems to be

little reason to use the six variable formulation for design purposes . The

principal advantage of this form is that it provides a costly check of the

assumption, used in the five variable form , that web buckling is active at

the optimum.

An examination of the optimal design for the type 2 problem reveals

several interesting characteristics. Not only is w3 essentially equal to

as found in Refs. [1,2] but is also essentially equal to w2. Further—

more, is associated with shell panel (inter—ring) vibration. The design

is characterized by relatively large frame spacing and large, deep framing

members. Thus, the optimal design uses the largest frame members and

spacing possible without inducing a shell panel vibration mode lower than

the second frequency associated with the gross vibration , and without y b —

lating the maximum weight constraint. It is apparent therefore that the

shell panel vibration should be considered in optimal frequency separation

problems.

Since the designs are controlled by the maximum weight constraint

it appears that optimal separation is achieved by paying a penalty in weight.

The characteristics of the design with the maximum lowest frequency

is rather similar to that with the largest frequency separation. The former

has a somwhat higher lowest frequency but no significant separation of this

frequency from the second or third lowest frequencies. Here again , shell

panel vibration controls the design.

- • -

~
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Comparing the designs in table 3 it appears that rather similar

designs may behave quite differently with respect to frequency separation.

This raises a serious question with regard to the validity of frequency

separation data. Orthotropic shell theory is only an approximation to actual

behavior. This and the earlier study of Refs . (1,2] furthermore use in

vacuo frequencies to study the characteristics of submerged shells. Con-

sidering the inaccuracy of these assumptions and the sensitivity of the

frequency separation results to relatively small design changes the data

for the type 2 problem appear to have little meaning excep t to indicate

possible general characteristics of such desi gns .

In addition to the search starting point cited in Table 3 were

made using the six variable formulation for problem types 2 and 3 from the

three additional starting points used in the type 0 study . These also

converged to designs similar to those of table 3 thus the starting point

sensitivity noted in Ref. [1] on their problem type 2 was not apparent here .

These results indicate that the optimization procedure used here is apparently 
-

capable of locating an optimum design with reasonable reliability for all

problem types studies. -

It should be noted that the frequency separation obtained for the

type 2 problem (w~ — — 30.48 Hz) is substantially greater then obtained

in Ref .  (1] (w 2 
— — 23.59 Hz) and that Ref. [1] failed to converge to

the maximum weight constraint. It appears therefore that the STiNT procedure

used in [1] also failed to locate the optimum design in the type 2 problem

of Ref. [1]. The difference in frequency separation results do not appear

to be due to the difference in shell theory used in [1] (Flugge —Lure—By rne)

with that used here (Donnel type).  The point cited as optimal in [1) produced
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a separation of 21.86 Hz using the Donnel theory utilized here, a value

somewhat lower than that of [1] , but still in good agreement . This lower

value further suggests that the frequency separation at the optimal point

claimed here, would in fact be somewhat larger using the frequency pre-

diction procedure of [1]. 

_ _  _  
_ _ _
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IV. Conclusion

Design for optimal frequency separation may require treatment of

the case where several frequencies must be separated simultaneously. The

methodology presented here appears effective in treating such problems.

These studies indicate that the simultaneous separation procedure and DSFD

optimization algorithm utilized here are capable of reliably treating the

optimal frequency separation problem.

The design studies show that shell panel vibration modes may be

active at the optimum. Thus, a consideration these modes should be included

in the optimal frequency separation problem. The similarity of designs with

optimal and negligable separation of the two lowest natural frequencies as

predicted by the orthotropic in vacuo model used here ana elsewhere indicates

that more accurate behavior prediction models are needed to produce meaning—

ful design results.
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